miniCOLL A Sparse Neural Retriever **Haystack** 2025

igdrant

Vector Search

An essential part of the AI Transformation

INDUSTRIES

SEARCH SYSTEMS

RAG / INFORMATION ASSISTANTS

RECOMMENDATIONS

ANOMALY DETECTION

You shall know a word

by the company it keeps

Agenda **q**drant 1.Motivation & BM25 recap 2.miniCOIL concept & 4-D vectors 3.Architecture & training pipeline 4.Advantages & benchmarks 5.Demo + how to extend 6.Q&A

BM25

 $ext{score}(D,Q) = \sum_{i=1}^n ext{IDF}(q_i) \cdot \left| egin{array}{c} f(q_i,D) \cdot (k_1+1) \ \hline f(q_i,D) + k_1 \cdot \left(1-b+b \cdot rac{|D|}{ ext{avgdl}}
ight) \end{array}
ight|$

qdrant

miniCOLL BM25 formula

1-D contaxt vactors

4-D context vectors

Homographs

"fruit bat" ≈ "baseball bat"

"calculator" ≈ "calculating"

Margin

Context Encoder:

We use a transformer model(we used Jina, but it is agnostic) to generate contextualized token embeddings.

Word Mapping:

miniCOIL works with real words or stems, not subword tokens like "retriever" instead of "re ##trie ##ver".

<u>"retriever"</u>

→ [re, ##trie, ##ver] (tokens) → "retriever" (miniCOIL)

Downprojection Model:

Each word in the vocabulary has its own lightweight model that projects the contextualized embedding to a 4-dimensional vector.

In Architecture

Sparse Scoring:

Each 4D vector is multiplied by the BM25 score for that word, creating a new sparse representation that's both semantic and interpretable.

Hybrid Use:

The resulting miniCOIL vector works seamlessly in hybrid search alongside dense vectors.

- Validation loss closely matches the theoretical lower bound
- <u>Model generalizes across</u>
 <u>examples</u>

Image: GrantImage: Mail of MailImage: BM25 vs minicoll

NDCG@10

BM25: 0.237

<u>miniCOIL: 0.244</u>

Not about benchmarks...

DEMO

o drant

miniCOIL Strengths

Flexible Transformer Support

Compatible with various transformers used for inference in hybrid search

Simple Architecture

1 word = 1 small trainable model, enabling extremely fast inference

No Labeled Training Data

Avoids relevance objectives, reducing data collection and overfitting risks

Vocabulary Extendable

New words can be added to the vocabulary without retraining existing models

Thierry Damiba

SCIENTIST AT QDRANT

qdrant

